본문 바로가기
  • AI와 함께 세상을 아름답게

비지도학습5

생성형 AI의 주요 기술 (1) - GAN(Generative Adversarial Network, 생성적 대립 신경망) Generative AI의 한글 표현(용어)은 다양합니다. 저는 앞으로 '생성형 AI' 또는 '생성형 인공지능'으로 통일해서 쓰도록 하겠습니다. 또한 Generative Adversarial Network의 한글 이름도 '생성적 대립 신경망(GAN)'으로 부르겠습니다. 생성형 AI에 대해서 보다 구체적으로 알아보려 합니다. 우선적으로 최근에 괄목할만한 발전을 보이는 생성형 AI를 가능하게 하는 여러 가지 모델과 핵심적 technique(기술)들에 대해 공부합니다. 그 첫 번째로 이번 편에서는 생성적 대립 신경망(GAN, Generative Adversarial Network)의 원리와 관련된 윤리적 문제에 대해 자세히 알아보도록 하겠습니다. 1. 생성적 대립 신경망이란? 이안 굿펠로우(Ian Goodfe.. 2023. 6. 26.
딥러닝(Deep Learning) (3) - 생성적 대립 신경망(GAN; Generative Adversarial Network) 5. 생성적 대립 신경망(GAN; Generative Adversarial Network) 생성적 대립 신경망(GAN; Generative Adversarial Netwrok)은 생성기(Generator)와 판별기(Discriminator)가 경쟁하면서 실제와 가까운 이미지, 동영상, 음성 등을 자동으로 만들어 내는 머신러닝(ML) 학습 방식의 하나로서, 두 개의 신경망(생성기와 판별기)을 조합하여 비지도학습(unsupervised learning)을 진행하면서 입력된 데이터와 유사한 데이터를 생성할 수 있는 생성계를 구성하는 시스템입니다. GAN을 이용하면 주어진 이미지 데이터를 사용해 학습을 진행하여 주어진 이미지 데이터와 유사한 새로운 이미지 데이터를 생성하는 이미지 생성계를 얻을 수 있습니다. 참.. 2023. 5. 25.
딥러닝(Deep Learning) (2) - 자기부호화기(autoencoder) 및 LSTM(Long Short-Term Memory) (앞 편의 합성곱 신경망에 이어서 공부합니다.) 3. 자기 부호화기(autoencoder) 자기 부호화기(autoencoder)는 3층 구조의 계층형 신경망입니다. 자기 부호화기(autoencoder)는 입력층과 출력층에 같은 수의 인공 뉴런이 있고, 은닉층에는 입출력층의 인공 뉴런보다 적은 수의 인공뉴런을 배치한 형태입니다. (그림 2) 자기 부호화기(autoencoder)는 원래 비지도학습(unsupervised learning)으로 차원 축소(dimensionality reduction)가 목적인 계층형 신경망입니다. 그 의미를 살펴보면 다음과 같습니다. 자기 부호화기에 넣은 학습 데이터는 입력층의 신경망 개수가 같은 차수의 벡터입니다. 자기 부호화기에서는 특정 학습 데이터에 대응하는 데이터와 일치.. 2023. 5. 24.
인공지능(AI)과 인공 신경망(Artificial Neural Network) (3) 2023.05.21 - [인공지능(AI; Artificial Intelligence)] - 인공지능(AI)과 인공 신경망(Artificial Neural Network) (2) 5. 순환 신경망(Recurrent Neural Network; RNN) 앞에서 보았듯이 계층형 신경망은 입력에서 출력으로 한 방향으로만 계산하는 신경망입니다. 이에 반해 순환 신경망(recurrent neural network)은 출력으로 향하는 신호가 입력 쪽에 피드백되는 구조를 가진 신경망입니다. (아래 그림은 순환 신경망 구조의 예입니다) 지금까지 공부해 온 단순한 계층형의 신경망과는 달리 데이터의 전달 경로가 출력에서 입력 방향으로 향하는 구조의 신경망을 일반적으로 순환 신경망(Recurrent Neural NetworK.. 2023. 5. 22.
머신러닝 학습 방법과 몇 가지 개념 (1) 1. 머신러닝(Machine Learning)의 학습 방법 머신러닝에는 다양한 학습 방법(기술)이 있습니다. 대표적인 몇 가지 학습 방법과 개념을 아래 도표로 소개합니다. 구체적이고 깊이 있는 내용은 이후 개별적으로 보다 깊이 있게 공부해 보겠습니다. 머신러닝(Machine Learning)의 대표적인 학습 방법 방법의 명칭 개념 설명 K-인접기법 분류 지식의 학습 방법. 특정 공간에 배치된 데이터세트를 분류하기 위한 지식으로 이용한다. 주어진 표본에서 거리가 가까운 순으로 k개의 데이터세트를 조사해서 다수를 차지하는 데이터세트가 속하는 클래스를 분류 결과의 클래스로 삼는다. 결정트리 두 갈래로 나뉜 나무 구조에 따라 특정 분류 순서를 기술한 데이터 구조. 복수의 특징을 통해 성질이나 분류를 결정할 수 .. 2023. 5. 13.
728x90