본문 바로가기
  • AI와 함께 세상을 아름답게

신경망3

자연어처리(NLP; Natural Language Processing) - 딥러닝을 이용한 자연어처리 (4) 2. 머신러닝을 이용한 자연어처리 앞서 설명한 바와 같이 자연어처리 기술은 수작업으로 문법이나 사전을 사전에 구성하는 (종래형) 방법에서 대규모 말뭉치(corpus)를 전제로 한 통계적 방법으로 발전했습니다. 그러나 대규모 데이터 처리에는 통계적 방법뿐만 아니라 머신러닝(machine learning), 특히 딥러닝(deep learniing)이 유용하게 사용되고 있습니다. 통계기반 기계번역과 인공신경망 기계번역은 딥러닝을 활용합니다. 사람은 학습 데이터를 수집하고 가공해서 컴퓨터에 던져주고, 컴퓨터는 입력된 학습 데이터를 바탕으로 스스로 공부합니다. 학습(learning)이 끝나면 번역 프로그램이 스스로 공부한 바를 바탕으로 새로운 문장을 보더라도 번역할 수 있는 능력을 키울 수 있습니다. 2.1 딥러.. 2023. 6. 3.
인공지능(AI)과 인공 신경망(Artificial Neural Network) (1) 1. 인공 신경망 인공 신경망(Artificial Neural Network: ANN)은 생물의 신경세포 및 신경세포 네트워크 기능을 시뮬레이션해서 다양한 입출력 관계를 구현하는 계산기구입니다. 인공신경망은 인간 두뇌의 신경세포 뉴런 네트워크 구조를 모방하여 만든 기계학습(machine learning: 머신러닝) 알고리즘 모델로 인공지능(AI) 시스템이 사람처럼 스스로 학습할 수 있도록 하는 머신러닝 기법입니다. 인공 신경망 기술이 적용되면서 머신러닝의 기술들이 한층 더 발전하고 있습니다. 생물의 신경계는 신경세포(neuron)의 상호 결합으로 이루어져 있습니다. 신경세포(neuron)는 시냅스(synapse)라 불리는 접촉부를 경유해 신경세포 간에 정보를 전달합니다. 인공 신경망(이하 '신경망'으로 .. 2023. 5. 19.
인공지능(AI)이란 무엇인가? (1편) 인공지능(AI)은 기본적으로 컴퓨터에서 음성 및 작성된 언어를 보고 이해하고 번역하고 데이터를 분석하고 추천하는 기능 등 인간의 지성이 필요하거나 대량의 데이터를 처리하는 방식을 포함한 다양한 기능을 수행할 수 있는 일련의 소프트웨어 기술입니다. 이런 기능을 구현하기 위하여 AI는 컴퓨터 공학, 데이터분석 및 통계, 하드웨어 및 소프트웨어 엔지니어링, 언어학, 신경과학은 물론 철학과 심리학 등 여러 학문과 광범위하게 연결되어 있습니다. 1. 인공지능(AI)의 유래와 학문으로서의 위치 인공지능(Artificial Intelligence: AI)이라는 용어는 1956년 미국 Dartmouth College에서 열린 인공지능을 주제로 한 학술회의에서 John McCarthy라는 학자가 처음으로 사용했다고 전해.. 2023. 5. 2.
728x90