임베딩1 자연어처리(NLP) 알고리즘 - Word2Vec vs Transformer 모델 Word2Vec은 인공 신경망을 사용하여 단어의 의미를 학습하는 기계학습 알고리즘입니다. Word2Vec은 단어의 빈도를 분석하여 단어의 의미를 학습하는 방법인 통계적 기법과는 달리 단어의 주변 단어를 분석하여 단어의 의미를 학습합니다. 단어의 의미를 파악하는 학습 방식에는 2가지 방법이 있습니다. 첫 번째 방식은 Skip-gram 방식입니다. Skip-gram 방식은 특정 단어(target word)를 기준으로 그 단어 주위에 있는 단어를 예측하는 방식입니다. 예를 들어, "집"이라는 단어를 기준으로 "사람", "마당", "주소"와 같은 단어를 예측합니다. 두 번째 방식은 CBOW(Continuous Bag of Words) 방식입니다. CBOW 방식은 특정 단어 주위에 있는 단어를 기준으로 그 단어(.. 2023. 7. 6. 이전 1 다음 728x90