본문 바로가기
  • AI와 함께 세상을 아름답게

신경망학습2

인공지능(AI)과 인공 신경망(Artificial Neural Network) (1) 1. 인공 신경망 인공 신경망(Artificial Neural Network: ANN)은 생물의 신경세포 및 신경세포 네트워크 기능을 시뮬레이션해서 다양한 입출력 관계를 구현하는 계산기구입니다. 인공신경망은 인간 두뇌의 신경세포 뉴런 네트워크 구조를 모방하여 만든 기계학습(machine learning: 머신러닝) 알고리즘 모델로 인공지능(AI) 시스템이 사람처럼 스스로 학습할 수 있도록 하는 머신러닝 기법입니다. 인공 신경망 기술이 적용되면서 머신러닝의 기술들이 한층 더 발전하고 있습니다. 생물의 신경계는 신경세포(neuron)의 상호 결합으로 이루어져 있습니다. 신경세포(neuron)는 시냅스(synapse)라 불리는 접촉부를 경유해 신경세포 간에 정보를 전달합니다. 인공 신경망(이하 '신경망'으로 .. 2023. 5. 19.
머신러닝 학습 방법과 몇 가지 개념 (2) 3. 학습 데이터세트와 검증 데이터세트 1) 학습 데이터세트와 학습 방법 머신러닝 모델의 학습 단계에서는 다양한 방법을 이용하여 학습 데이터세트에서 지식(knowledge)을 추출합니다. 이때 학습 데이터세트 이용방법의 차이에 따라 학습과정을 다음과 같이 분류할 수 있습니다. a) 배치학습(batch learning): 배치 학습(Batch Learning)은 모든 학습 데이터를 한 번에 가져와서 모델을 학습시키는 머신 러닝 방법입니다. 모델이 모든 데이터를 한 번에 볼 수 있기 때문에, 배치 학습은 대규모 데이터셋에서 매우 유용합니다. 학습의 순서는 아래와 같습니다. 1. 초기 모델 설정: 모델을 초기화하고, 초기 가중치를 설정합니다. 2. 모든 데이터 수신 및 전처리: 모든 학습 데이터를 가져와서 전.. 2023. 5. 14.
728x90